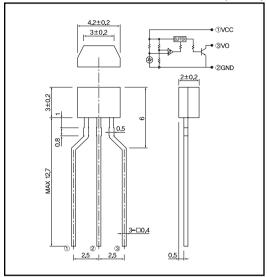
BMR - 0301

BMR-0301 is the low reset type of IC that guarantee to set againmicro **DIMENSIONS** computers or logic systems by detecting the intermittent of fluctuating power supply voltage during normal use or switching on/off of theequipments.

A comparator type of hysteresis transistor developed by KODENSHI is built in the IC.so that BMR - 0301 is very cost effective components. And BMR-0301 is a super-low consumption electric current system reset IC which has been developed with using high resistance process.


FEATURES

- Super-low current consumption
- Low operation voltage
- High current of output transistor
- Hvsteresis circuit built in
- It has on delay function to supplement the constant of outer C and R

APPLICATIONS

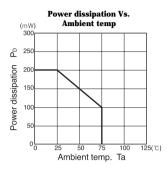
- Micro computer circuits in mobile phones, word processors, TVs, VCRs etc.
- · General logic circuits
- Detection of voltage drop in batteries of note personal computers mobile phones
- Switching to backup power supply

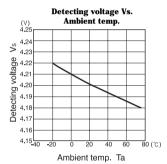
(Unit: mm)

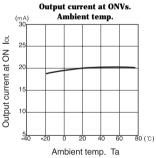
MAXIMUM RATINGS

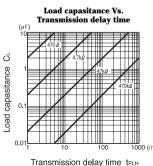
(Ta=25)

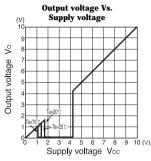
Item	Symbol	Rating	Unit
Supply voltage	Vcc	-0.3~+10.0	V
Power dissipation	P□	200	mW
Operating temp.	Topr.	- 20~ +75	
Storage temp.	Tstg	- 40~ + 125	
Soldering temp.*1	Tsol.	260	

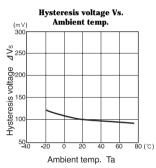

^{*1.5}sec at location of 2mm away from lead bottom.

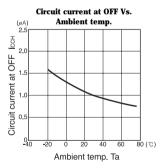

ELECTRO-OPTICAL CHARACTERISTICS

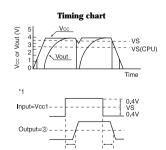

(Vc = 5V, Ta = 25)

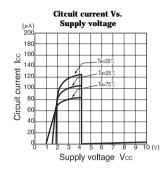

	Item	Symbol	Conditions	Min.	Тур.	Max.	Unit.
		Cyllibol	Conditions				Offit.
Detecting Voltage	BMR - 0301C	Vs	Rt = 470 , Vcc = H L, Vct 0.4V	4.3	4.5	4.7	V
	BMR - 0301D			4.0	4.2	4.4	
	BMR - 0301E			3.7	3.9	4.1	
	BMR - 0301F			3.4	3.6	3.8	
	BMR - 0301G			3.1	3.3	3.5	
	BMR - 0301H			2.9	3.1	3.3	
	BMR - 0301I			2.75	2.9	3.05	
	BMR - 0301J			2.55	2.7	2.85	
	BMR - 0301K			2.35	2.5	2.65	
	BMR - 03 01L			2.15	2.3	2.45	
Hysteresis voltage		Vs	R∟=470 ,Vcc=L H L	40	100	300	mV
Temperature coeffici	ent of detecting voltage	Vs / T	R-=470 ,Ta=-20 ~75	-	±0.01	-	%/
Low level output volta	age	Vol	R∟ = 470 ,Vcc = Vs Min.	-	0.1	0.4	V
Circuit current at ON		CCL	$R_L = V_{CC} = V_S Min.$	-	100	180	μA
Circuit current at OFF	=	ССН	$R_L = V_{CC} = V_S Max + 0.1V$	-	1.0	2.5	μA
Threshold operating voltage		Vopl	R∟ = 4.7k , Vo∟ 0.4V	-	1.4	1.6	V
Output current at ON 1		lol 1	$R_{\perp} = 0$, $V_{CC} = V_S Min$.	10	20	-	mA
Output current at ON 2		lol 2	R₁=0 ,Ta=-20 ~75	5	-	-	mΑ
Transmission delay time		t PLH	R₁ = 4.7k , C₁ = 100pF	-	100	500	µsec
Transmission delay time		t PHL	R₁ = 4.7k ,C₁ = 100pF	-	10	20	usec

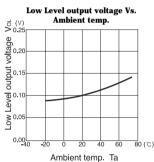

BMR - 0301

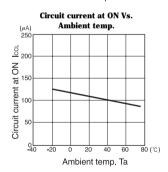












Vcc : V
VScpu : Reset threshold voltage of CPU,MPU
CL : μF
RL : kQ
Coution) It is desirable that Conseits

Caution) It is desirable that Capacitor be built between

① and ② terminal when high impedence of V_∞
line, unstable power line or high ripple occurence
to expected.